高中数学题,求解!

如图13.14.16在线等,拜托~关键是14题,...... 如图13.14.16在线等,拜托~关键 是14题,... 展开
 我来答
心在天边418
2020-03-03 · TA获得超过2409个赞
知道小有建树答主
回答量:2314
采纳率:73%
帮助的人:136万
展开全部

你好,很高兴地解答你的问题。

【解析】:

追答
望采纳最佳答案
玉w头说教育
2020-03-03 · TA获得超过573个赞
知道小有建树答主
回答量:823
采纳率:83%
帮助的人:32万
展开全部
尽量一道题一道题的去提问。因为别人一看题目很多都不愿意仔细看,更别说有人回答了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
王雪婷1206
2020-03-02
知道答主
回答量:98
采纳率:14%
帮助的人:11万
展开全部
还需要么 同学
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
积角累4703
2020-03-02 · TA获得超过4784个赞
知道大有可为答主
回答量:6553
采纳率:83%
帮助的人:207万
展开全部
一 题二 题三 题四 题五 搜全网
题目
已知函数f(x)=|x+a|+|2x-1|(a∈R).
(Ⅰ)当a=1时,求不等式f(x)≥2的解集;
(Ⅱ)若f(x)≤2x的解集包含[
1
2
,1],求a的取值范围.
解析
(1)通过分类讨论,去掉绝对值函数中的绝对值符号,转化为分段函数,即可求得不等式f(x)>0的解集;
(2)由题意知,不等式可化为|x+a|+2x-1≤2x,即|x+a|≤1,解得-a-1≤x≤-a+1,
由f(x)≤2x的解集包含[
1
2
,1],可得
−a−1≤
1
2
−a+1≥1
,解出即可得到a的取值范围.
解答
(1)当a=1时,不等式f(x)≥2可化为|x+1|+|2x-1|≥2,
①当x≥
1
2
时,不等式为3x≥2,解得x≥
2
3

故此时不等式f(x)≥2的解集为x≥
2
3

②当-1≤x<
1
2
时,不等式为2-x≥2,解得x≤0,
故此时不等式f(x)≥2的解集为-1≤x<0;
③当x<-1时,不等式为-3x≥2,解得x≤−
2
3
,故x<-1;
综上原不等式的解集为{x|x≤0或x≥
2
3
};
(2)因为f(x)≤2x的解集包含[
1
2
,1],
不等式可化为|x+a|+2x-1≤2x,即|x+a|≤1,
解得-a-1≤x≤-a+1,
由已知得
−a−1≤
1
2
−a+1≥1
,解得−
3
2
≤a≤0
所以a的取值范围是[−
3
2
,0].
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式