求一道高数题 p87.25
2020-01-02 · 知道合伙人教育行家
关注
展开全部
(0至4)∫{(x+2)/√(2x+1)}dx
= (0至4)∫(√2/2){(x+1/2+3/2)/√(x+1/2)}dx
= (0至4)∫(√2/2){√(x+1/2)+(3/2)/√(x+1/2)}dx
= (√2/2){(2/3)√(x+1/2)³+(3/2)*2√(x+1/2)} | (0至4)
= {√2/3)*√(x+1/2)³+(3√2/2)*√(x+1/2)} | (0至4)
= {√2/3)*√(4+1/2)³+(3√2/2)*√(4+1/2)}- {√2/3)*√(0+1/2)³+(3√2/2)*√(0+1/2)}
= {√2/3)*27/(2√2)+(3√2/2)*3/√2}- {√2/3)*1/(2√2)+(3√2/2)*1/√2)}
= 9/2+9/2-9/2-1/6-3/2
= 22/3
= 7又1/3
= (0至4)∫(√2/2){(x+1/2+3/2)/√(x+1/2)}dx
= (0至4)∫(√2/2){√(x+1/2)+(3/2)/√(x+1/2)}dx
= (√2/2){(2/3)√(x+1/2)³+(3/2)*2√(x+1/2)} | (0至4)
= {√2/3)*√(x+1/2)³+(3√2/2)*√(x+1/2)} | (0至4)
= {√2/3)*√(4+1/2)³+(3√2/2)*√(4+1/2)}- {√2/3)*√(0+1/2)³+(3√2/2)*√(0+1/2)}
= {√2/3)*27/(2√2)+(3√2/2)*3/√2}- {√2/3)*1/(2√2)+(3√2/2)*1/√2)}
= 9/2+9/2-9/2-1/6-3/2
= 22/3
= 7又1/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询