数列极限的问题
lim[(1/1*4)+(1/4*7)+(1/7*10)+.....+1/(3n-2)(3n+2)]求解要有步骤...
lim[(1/1*4)+(1/4*7)+(1/7*10)+.....+1/(3n-2)(3n+2)] 求解 要有步骤
展开
展开全部
lim[(1/1*4)+(1/4*7)+(1/7*10)+.....+1/(3n-2)(3n+2)]
=(1/3)lim{(1 - 1/4)+(1/4 - 1/7) + ..... +[1/(3n-2) - 1/(3n+2)]}
=(1/3)lim{1 - 1/(3n+2)}
=(1/3)lim(3n+1)/(3n+2)
=(1/3)lim[3+(1/n)]/[3+(2/n)] [分子分母同除以n]
=(1/3)[3+0]/[3+0]
=1/3
or
lim[(1/1*4)+(1/4*7)+(1/7*10)+.....+1/(3n-2)(3n+2)]
=(1/3)lim{(1 - 1/4)+(1/4 - 1/7) + ..... +[1/(3n-2) - 1/(3n+2)]}
=(1/3)lim{1-1/(3n+2)}
=(1/3)[1-1/∞]
=(1/3)[1-0]
=1/3
=(1/3)lim{(1 - 1/4)+(1/4 - 1/7) + ..... +[1/(3n-2) - 1/(3n+2)]}
=(1/3)lim{1 - 1/(3n+2)}
=(1/3)lim(3n+1)/(3n+2)
=(1/3)lim[3+(1/n)]/[3+(2/n)] [分子分母同除以n]
=(1/3)[3+0]/[3+0]
=1/3
or
lim[(1/1*4)+(1/4*7)+(1/7*10)+.....+1/(3n-2)(3n+2)]
=(1/3)lim{(1 - 1/4)+(1/4 - 1/7) + ..... +[1/(3n-2) - 1/(3n+2)]}
=(1/3)lim{1-1/(3n+2)}
=(1/3)[1-1/∞]
=(1/3)[1-0]
=1/3
2010-09-19
展开全部
拆开算,用partial fraction decomposition,不就解决了??
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询