展开全部
k^2
= k(k+1) -k
= (1/3)[ k(k+1)(k+2) -(k-1)k(k+1)] -(1/2)[k(k+1)-(k-1)k]
∑(k:1->n) k^2
=∑(k:1->n) { (1/3)[ k(k+1)(k+2) -(k-1)k(k+1)] -(1/2)[k(k+1)-(k-1)k] }
=(1/3)n(n+1)(n+2) -(1/2)n(n+1)
=(1/6)n(n+1)( 2n+4 -3)
=(1/6)n(n+1)( 2n+1)
= k(k+1) -k
= (1/3)[ k(k+1)(k+2) -(k-1)k(k+1)] -(1/2)[k(k+1)-(k-1)k]
∑(k:1->n) k^2
=∑(k:1->n) { (1/3)[ k(k+1)(k+2) -(k-1)k(k+1)] -(1/2)[k(k+1)-(k-1)k] }
=(1/3)n(n+1)(n+2) -(1/2)n(n+1)
=(1/6)n(n+1)( 2n+4 -3)
=(1/6)n(n+1)( 2n+1)
追问
都说了必须要用二项式定理做鸭🙃🙃
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |