数学题:已知COS(π/4-a)=3/5 sin(5π/4+b)=-12/13,a∈(π/4,3π/4),b∈(0,π/4),求sin(a+b)
1个回答
展开全部
因为a∈(π/4,3π/4),b∈(0,π/4),所以π/4<a+b<π
-π/2<π/4-a<0,5π/4<5π/4+b<3π/2
cos(π/4-a)=3/5,sin(5π/4+b)=-12/13
则sin(π/4-a)=-4/5,cos(5π/4+b)=-5/13
sin(a+b)=-sin(π+a+b)=-sin[-(π/4-a)+(5π/4+b)]
=sin(π/4-a)*cos(5π/4+b)-cos(π/4-a)*sin(5π/4+b)
=-4/5*(-5/13)-3/5*(-12/13)
=56//65
-π/2<π/4-a<0,5π/4<5π/4+b<3π/2
cos(π/4-a)=3/5,sin(5π/4+b)=-12/13
则sin(π/4-a)=-4/5,cos(5π/4+b)=-5/13
sin(a+b)=-sin(π+a+b)=-sin[-(π/4-a)+(5π/4+b)]
=sin(π/4-a)*cos(5π/4+b)-cos(π/4-a)*sin(5π/4+b)
=-4/5*(-5/13)-3/5*(-12/13)
=56//65
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询