在8到21这14个自然数中取两个不同的数使它们的和是七的倍数共有多少种不同的起法?

 我来答
朴质且婉顺的小赤子2618
2020-02-11 · TA获得超过1873个赞
知道小有建树答主
回答量:2389
采纳率:82%
帮助的人:205万
展开全部
(1)首先把这30个数分类:1、被4整除:4,8,12…28 (7个);2、被4除余1:1,5,9,13…29(8个);3、被4除余2:2,6,10,14…30(8个);4、被4除余3:3,7,11,15…27(7个);

(2)进一步分析探讨:
第1组的数,必须和第1组的数,才能使和为4的倍数6+5+4+3+2+1=21(种);
第2组的数,必须和第4组的数,才能使和为4的倍数7×8=56(种);
第3组的数,必须和第3组的数,才能使和为4个倍数7+6+5+4+3+2+1=28(种);
第4组的数,刚才已经讨论过了,不必再讨论;
所以一共有21+56+28=105(种).
故答案为:105.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式