求这道重积分怎么解?
3个回答
展开全部
区域D可以橘者表示为由x=y^2,x=1,y=0围成的嫌派闭芹伍贺区域
原式=∫(0,1)dy*∫(y^2,1)e^[-(y^2)/2]dx
=∫(0,1)e^[-(y^2)/2]*(1-y^2)dy
=∫(0,1)e^[-(y^2)/2]dy-∫(0,1)e^[-(y^2)/2]*y^2dy
=e^[-(y^2)/2]*y|(0,1)-∫(0,1)yd{e^[-(y^2)/2]}-∫(0,1)e^[-(y^2)/2]*y^2dy
=e^(-1/2)-∫(0,1)e^[-(y^2)/2]*(-y^2)dy-∫(0,1)e^[-(y^2)/2]*y^2dy
=e^(-1/2)
原式=∫(0,1)dy*∫(y^2,1)e^[-(y^2)/2]dx
=∫(0,1)e^[-(y^2)/2]*(1-y^2)dy
=∫(0,1)e^[-(y^2)/2]dy-∫(0,1)e^[-(y^2)/2]*y^2dy
=e^[-(y^2)/2]*y|(0,1)-∫(0,1)yd{e^[-(y^2)/2]}-∫(0,1)e^[-(y^2)/2]*y^2dy
=e^(-1/2)-∫(0,1)e^[-(y^2)/2]*(-y^2)dy-∫(0,1)e^[-(y^2)/2]*y^2dy
=e^(-1/2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询