弧长的曲线积分 坐标的曲线积分[实际意义]的区别
1个回答
展开全部
实际意义不好说,但是物理意义不一样了
先说对弧长的曲线积分,它的物理意义是功,我现在定义一个函数f(x,y,z),它是力的函数,现在曲线方程为u
=
u(x,y,z),那么这个力的函数沿着曲线方程做功,问你做的功有多大???就是第一类曲线积分,对弧长的曲线积分了吧???
再说对坐标的曲线积分,则对应的物理意思就是向量,比如我给的力的函数为向量﹛p、q、r﹜,那么功的定义肯定是和对应的﹛dx、dy、dz﹜相乘吧???就是第二类曲线积分……
另外第二类曲线积分还可以用于定义场的一些量,比第一类曲线积分常用的……
先说对弧长的曲线积分,它的物理意义是功,我现在定义一个函数f(x,y,z),它是力的函数,现在曲线方程为u
=
u(x,y,z),那么这个力的函数沿着曲线方程做功,问你做的功有多大???就是第一类曲线积分,对弧长的曲线积分了吧???
再说对坐标的曲线积分,则对应的物理意思就是向量,比如我给的力的函数为向量﹛p、q、r﹜,那么功的定义肯定是和对应的﹛dx、dy、dz﹜相乘吧???就是第二类曲线积分……
另外第二类曲线积分还可以用于定义场的一些量,比第一类曲线积分常用的……
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询