证明:在三角形ABC,cosA+cosB+cosC大于等于3/2
1个回答
展开全部
证明一
(逐步调整法)由和差化积公式得
cosa+cosb+cosc+cos(π/3)
=2cos[(a+b)/2]cos[(a-b)/2]+2cos[(c+π/3)/2]cos[(c-π/3)/2]
<=2{cos[(a+b)/2]+cos[(c+π/3)/2]}
=4cos[(a+b+c+π/3)/4]cos[(a+b-c-π/3)/4]
<=4cos[(a+b+c+π/3)/4]
=4cos[(π+π/3)/4]
=4cos(π/3),
所以
cosa+cosb+cosc<=3cos(π/3)=3/2.
(逐步调整法)由和差化积公式得
cosa+cosb+cosc+cos(π/3)
=2cos[(a+b)/2]cos[(a-b)/2]+2cos[(c+π/3)/2]cos[(c-π/3)/2]
<=2{cos[(a+b)/2]+cos[(c+π/3)/2]}
=4cos[(a+b+c+π/3)/4]cos[(a+b-c-π/3)/4]
<=4cos[(a+b+c+π/3)/4]
=4cos[(π+π/3)/4]
=4cos(π/3),
所以
cosa+cosb+cosc<=3cos(π/3)=3/2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询