
已知集合A={x|ax^2-3x-4=0,x∈R}(1)若A中有两个元素,求实数a的取值范围(2)若A中至多有1个元素,求a范
已知集合A={x|ax^2-3x-4=0,x∈R}(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有1个元素,求实数a的取值范围。...
已知集合A={x|ax^2-3x-4=0,x∈R}(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有1个元素,求实数a的取值范围。
展开
展开全部
解:
(1)A中有两个元素,说明方程ax²-3x-4=0有两解
于是,有 △=9+16a>0(a≠0) 得到a>-9/16且a≠0
(2)至多有一个元素:
(a)0元素:
a≠0,△<0,得到a<-9/16
(b)1元素:
当a=0时,显然有且只有1个元素
当a≠0时,令△=0,得到a=-9/16
综上所述,a≤-9/16或者a=0.
(1)A中有两个元素,说明方程ax²-3x-4=0有两解
于是,有 △=9+16a>0(a≠0) 得到a>-9/16且a≠0
(2)至多有一个元素:
(a)0元素:
a≠0,△<0,得到a<-9/16
(b)1元素:
当a=0时,显然有且只有1个元素
当a≠0时,令△=0,得到a=-9/16
综上所述,a≤-9/16或者a=0.
展开全部
解:
分析:首先解决此问题要知道b²-4ac,
∵A中有两个元素
∴b²-4ac>0 且a≠0
(1)代入数值:9+16a>0
解得a>-9/16
(2)b²-4ac≤0 代入数值 a≤-9/16
当a=0时, -3x-4=0 x=-4/3 也符合条件
在(2)中 综上所述a≤-9/16且a=0
分析:首先解决此问题要知道b²-4ac,
∵A中有两个元素
∴b²-4ac>0 且a≠0
(1)代入数值:9+16a>0
解得a>-9/16
(2)b²-4ac≤0 代入数值 a≤-9/16
当a=0时, -3x-4=0 x=-4/3 也符合条件
在(2)中 综上所述a≤-9/16且a=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)集合A={x|ax^2-3x-4=0,x∈R},A中有两个元素
a≠0且Δ=3^2+16a>0 →a>-9/16且a≠0
(2)A中至多有1个元素,a=0或Δ=3^2+16a≤0 →a≤-9/16或a=0
a≠0且Δ=3^2+16a>0 →a>-9/16且a≠0
(2)A中至多有1个元素,a=0或Δ=3^2+16a≤0 →a≤-9/16或a=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |