导数和微分的区别

 我来答
用翠花寇霜
2020-01-19 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:27%
帮助的人:690万
展开全部
楼上的,问题是导数和微分的区别,你怎么说到微分和积分的区别了。
对于一元函数y=f(x)而言,导数和微分没什么差别。导数的几何意义是曲线y=f(x)的瞬时变化率,即切线斜率。微分是指函数因变量的增量和自变量增量的比值△y=△f(x+△x)-f(x),这里可以把自变量x看成是关于自身的函数y=x,那么△x=△y,所以微分另一种说法叫微商,dy/dx是两个变量的比值。一般来说,dy/dx=y'。
对于多元函数,如二元函数z=f(x,y)而言,导数变成了关于某个变量的偏导数。此时,微分符号dz/dx是个整体,不能拆开理解。而且,有个重要区别,可导不一定可微。即可导是可微的必要非充分条件。但是,有定理,若偏导数连续则函数可微。具体看全微分与偏导数有关章节。
THE
END。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式