求∫1/x²√﹙4+x²﹚dx
1个回答
展开全部
方法一:运用公式∫
dx/(a²
+
b²x²)
=
(1/ab)arctan(bx/a)
+
c
∫
dx/(x²
+
4)
=
(1/2)arctan(x/2)
+
c
方法二:三角函数换元法:令x
=
2tanz,dx
=
2sec²z
dz
∫
dx/(x²
+
4)
=
∫
(2sec²z
dz)/(4tan²z
+
4)
=
∫
2sec²z/[4(tan²z
+
1)]
dz
=
(1/2)∫
sec²z/sec²z
dz
=
z/2
+
c
=
(1/2)arctan(x/2)
+
c,因为tanz
=
x/2
dx/(a²
+
b²x²)
=
(1/ab)arctan(bx/a)
+
c
∫
dx/(x²
+
4)
=
(1/2)arctan(x/2)
+
c
方法二:三角函数换元法:令x
=
2tanz,dx
=
2sec²z
dz
∫
dx/(x²
+
4)
=
∫
(2sec²z
dz)/(4tan²z
+
4)
=
∫
2sec²z/[4(tan²z
+
1)]
dz
=
(1/2)∫
sec²z/sec²z
dz
=
z/2
+
c
=
(1/2)arctan(x/2)
+
c,因为tanz
=
x/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询