高等数学不定积分?
4个回答
瑞达小美
2024-11-27 广告
2024-11-27 广告
法考分为主观题与客观题。课程针对应试,精准学习。导学、精讲、真金题、冲刺各阶段相辅相成,直击考点。瑞达法考APP一站式学习,碎片时间也能充分利用。2016年瑞达教育正式成立,总部位于北京市,在北京、天津、上海、广州、深圳、南京、杭州、海口设...
点击进入详情页
本回答由瑞达小美提供
展开全部
let
x= (sinu)^2
dx=2sinu.cosu du
x=3/4, u=π/3
x=1, u=π/2
∫(3/4->1) x/[√(1-x) -1] dx
=∫(π/3->π/2) [ (sinu)^2/(cosu -1) ] .[2sinu.cosu du]
=2∫(π/3->π/2) (sinu)^3. cosu/(cosu -1) du
=2∫(π/3->π/2) (sinu)^3. cosu( cosu +1) /[-(sinu)^2] du
=-2∫(π/3->π/2) sinu. cosu( cosu +1) du
=2∫(π/3->π/2) cosu( cosu +1) dcosu
=2 [ (1/3)(cosu)^3 + (1/2) (cosu)^2 ]|(π/3->π/2)
=-2[ (1/3)(√3/2)^3 +(1/2)(√3/2)^2 ]
=-2[ (1/8)√3 +(3/8)√3 ]
=-√3
x= (sinu)^2
dx=2sinu.cosu du
x=3/4, u=π/3
x=1, u=π/2
∫(3/4->1) x/[√(1-x) -1] dx
=∫(π/3->π/2) [ (sinu)^2/(cosu -1) ] .[2sinu.cosu du]
=2∫(π/3->π/2) (sinu)^3. cosu/(cosu -1) du
=2∫(π/3->π/2) (sinu)^3. cosu( cosu +1) /[-(sinu)^2] du
=-2∫(π/3->π/2) sinu. cosu( cosu +1) du
=2∫(π/3->π/2) cosu( cosu +1) dcosu
=2 [ (1/3)(cosu)^3 + (1/2) (cosu)^2 ]|(π/3->π/2)
=-2[ (1/3)(√3/2)^3 +(1/2)(√3/2)^2 ]
=-2[ (1/8)√3 +(3/8)√3 ]
=-√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令u=√(1-x),则x=1-u²,dx=-2u·du 积分限:u(½,0)
∫dx/[√(1-x)-1]
=∫-2udu/(u-1)
=-2∫[u/(u-1)]du
=-2∫[(u-1+1)/(u-1)]du
=-2∫[1+1/(u-1)]du
=-2u-2ln|u-1|+C
定积分=2u+2ln|u-1||(0,½)
=1+2ln½
=1-2ln2
∫dx/[√(1-x)-1]
=∫-2udu/(u-1)
=-2∫[u/(u-1)]du
=-2∫[(u-1+1)/(u-1)]du
=-2∫[1+1/(u-1)]du
=-2u-2ln|u-1|+C
定积分=2u+2ln|u-1||(0,½)
=1+2ln½
=1-2ln2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询