一元二次方程一般形式的解法

 我来答
内蒙古恒学教育
2022-11-10 · 专注于教育培训升学规划
内蒙古恒学教育
向TA提问
展开全部
ax?+bx+c=0。
其中ax?是二次项,a是二次项系数;bx是一次项;b是一次项系数;c是常数项。
公元前2000年左右,古巴比伦的数学家就能解一元二次方程了。他们是这样描述的:已知一个数与它的倒数之和等于一个已给数,求出这个数。他们使x1+x2=b,x1x2=1,x2-bx+1=0,再做出解答。可见,古巴比伦人已知道一元二次方程的解法,但他们当时并不接受负数,所以负根是略而不提的。
教育天团

2021-07-07 · 专注教育,体验成功的喜悦
教育天团
采纳数:61 获赞数:182

向TA提问 私信TA
展开全部
一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:   1、直接开平方法;2、配方法;3、公式法;4、因式分解法。   1、直接开平方法:   直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)^2;=n (n≥0)的 方程,其解为x=±√n+m .   例1.解方程(1)(3x+1)^2;=7 (2)9x^2;-24x+16=11   分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2;,右边=11>0,所以此方程也可用直接开平方法解。   (1)解:(3x+1)^2=7   ∴(3x+1)^2=7   ∴3x+1=±√7(注意不要丢解符号)   ∴x= ﹙﹣1±√7﹚/3   ∴原方程的解为x?=﹙√7﹣1﹚/3,x?=﹙﹣√7-1﹚/3   (2)解: 9x^2-24x+16=11   ∴(3x-4)^2=11   ∴3x-4=±√11   ∴x=﹙ 4±√11﹚/3   ∴原方程的解为x?=﹙4﹢√11﹚/3,x?= ﹙4﹣√11﹚/3   2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)   先将常数c移到方程右边:ax^2+bx=-c   将二次项系数化为1:x^2+b/ax=- c/a   方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2;   方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²   当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²   ∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式)   例2.用配方法解方程 3x²-4x-2=0   解:将常数项移到方程右边 3x²-4x=2   将二次项系数化为1:x²-﹙4/3﹚x= ?   方程两边都加上一次项系数一半的平方:x²-﹙4/3﹚x+( 4/6)²=? +(4/6 )²   配方:(x-4/6)²= ? +(4/6 )²   直接开平方得:x-4/6=± √[? +(4/6 )² ]   ∴x= 4/6± √[? +(4/6 )² ]   ∴原方程的解为x?=4/6﹢√﹙10/6﹚,x?=4/6﹣√﹙10/6﹚ .   3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) , (b²-4ac≥0)就可得到方程的根。   例3.用公式法解方程 2x²-8x=-5   解:将方程化为一般形式:2x²-8x+5=0   ∴a=2, b=-8, c=5   b²-4ac=(-8)²-4×2×5=64-40=24>0   ∴x=[(-b±√(b²-4ac)]/(2a)   ∴原方程的解为x?=,x?= .   4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
明天更美好007

2020-09-17 · 不忘初心,方得始终。
明天更美好007
采纳数:3328 获赞数:10609

向TA提问 私信TA
展开全部
一元二次方程一般形式的解法,首是先将二次项系数化为1,然后配成完全平方式,最后开出完全平方式。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
丹的葵奎6y

2020-09-17 · TA获得超过4.1万个赞
知道大有可为答主
回答量:2.2万
采纳率:98%
帮助的人:676万
展开全部
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:   1、直接开平方法;2、配方法;3、公式法;4、因式分解法。   1、直接开平方法:   直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)^2;=n (n≥0)的 方程,其解为x=±√n+m .   例1.解方程(1)(3x+1)^2;=7 (2)9x^2;-24x+16=11   分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2;,右边=11>0,所以此方程也可用直接开平方法解。   (1)解:(3x+1)^2=7   ∴(3x+1)^2=7   ∴3x+1=±√7(注意不要丢解符号)   ∴x= ﹙﹣1±√7﹚/3   ∴原方程的解为x?=﹙√7﹣1﹚/3,x?=﹙﹣√7-1﹚/3   (2)解: 9x^2-24x+16=11   ∴(3x-4)^2=11   ∴3x-4=±√11   ∴x=﹙ 4±√11﹚/3   ∴原方程的解为x?=﹙4﹢√11﹚/3,x?= ﹙4﹣√11﹚/3   2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)   先将常数c移到方程右边:ax^2+bx=-c   将二次项系数化为1:x^2+b/ax=- c/a   方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2;   方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²   当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²   ∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式)   例2.用配方法解方程 3x²-4x-2=0   解:将常数项移到方程右边 3x²-4x=2   将二次项系数化为1:x²-﹙4/3﹚x= ?   方程两边都加上一次项系数一半的平方:x²-﹙4/3﹚x+( 4/6)²=? +(4/6 )²   配方:(x-4/6)²= ? +(4/6 )²   直接开平方得:x-4/6=± √[? +(4/6 )² ]   ∴x= 4/6± √[? +(4/6 )² ]   ∴原方程的解为x?=4/6﹢√﹙10/6﹚,x?=4/6﹣√﹙10/6﹚ .   3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) , (b²-4ac≥0)就可得到方程的根。   例3.用公式法解方程 2x²-8x=-5   解:将方程化为一般形式:2x²-8x+5=0   ∴a=2, b=-8, c=5   b²-4ac=(-8)²-4×2×5=64-40=24>0   ∴x=[(-b±√(b²-4ac)]/(2a)   ∴原方程的解为x?=,x?= .   4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式