一直E,F分别是正方形ABCD的边BC,CD上的点,且角EAF=45度.求证:BE+FD=EF

kxrkylh
推荐于2016-12-02 · TA获得超过1.1万个赞
知道小有建树答主
回答量:366
采纳率:0%
帮助的人:758万
展开全部
证明:延长CD至G,使DG=BE;连接AG
∵四边形ABCD是正方形
∴∠ADC=90°.AB=AD
∴∠ADG=90°
在△ABE和△ADG中
AB=AD, ∠B=∠ADG, BE=DG
∴△ABE≌△ADG(SAS)
∴∠BAE=∠DAG,AE=AG
∵∠BAE+∠FAD=90°-∠EAF=90°-45°=45°
∴∠DAG+∠FAD=45°=∠GAF
在△AEF和△AGF中
AE=AG,∠EAF=∠GAF=45°,AF=AF
∴△AEF≌△AGF(SAS)
∴EF=GF
∵GF=DG+FD=BE+FD
∴EF=BE+FD
百度网友467aacd58
2007-01-13
知道答主
回答量:65
采纳率:0%
帮助的人:0
展开全部
延长AD AB与FE这条直线相交
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式