1个回答
展开全部
解法一:原式=lim(x->5){[x^(1/2)+5^(1/2)]/[x^(2/余迟饥3)+(5x)^(1/3)+5^(2/3)]}
(分子分母同乘[x^(1/2)+5^(1/2)]*[x^(2/3)+(5x)^(1/3)+5^(2/3)],再化简)
=[5^(1/2)+5^(1/2)]/[5^(2/3)+(5*5)^(1/3)+5^(2/竖返3)]
=(2/3)/5^(1/6);
解法二:原式=lim(x->5){[(1/3)x^(-2/3)]/[(1/2)x^(-1/2)]}
(0/0型极限,应用罗比旦丛达法则)
=[(1/3)*5^(-2/3)]/[(1/2)*5^(-1/2)]
=(2/3)/5^(1/6)。
(分子分母同乘[x^(1/2)+5^(1/2)]*[x^(2/3)+(5x)^(1/3)+5^(2/3)],再化简)
=[5^(1/2)+5^(1/2)]/[5^(2/3)+(5*5)^(1/3)+5^(2/竖返3)]
=(2/3)/5^(1/6);
解法二:原式=lim(x->5){[(1/3)x^(-2/3)]/[(1/2)x^(-1/2)]}
(0/0型极限,应用罗比旦丛达法则)
=[(1/3)*5^(-2/3)]/[(1/2)*5^(-1/2)]
=(2/3)/5^(1/6)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询