全套华罗庚的《高等数学引论》和整个大学本科数学系的教学内容是否相当?
若不相当,还欠缺什么!?内容的丰富程度是否有差距?除此之外还有什么不同?额是不是就包含了高等数学和线性代数了,学完这套书就不需要在学高数和线性代数?内容如下!(四册书大概...
若不相当,还欠缺什么!?内容的丰富程度是否有差距?
除此之外还有什么不同?
额 是不是就包含了高等数学和线性代数了,学完这套书就不需要在学高数和线性代数?
内容如下!(四册书大概超过1500页了)
第一册:1实数与负数.2向量代数 3函数与图像4极限5微分6微商的应用7函数Taylor展开式 8 方程的近似解9不定积分10定积分
第二册:11积分学的应用 12多个变量的函数 13带变量的序列,数级和积分 14曲线的微分性质 15重积分
16线积分 面积分 17纯量场与向量场 18曲面的微分性质 19Fourier级数 20常微分方程组
第三册:1复数平面上的几何 2非欧几何学 3解析函数,调和函数的定义及例子 4调和函数 5点集论和拓扑学中的若干预备知识 6 解析函数 7留数及其应用定积分计算 8最大模原与函数族 9整函数与亚纯函数 10 保角变换 11 求和法 12适合各种边界条件的调和函数 13 椭圆函数论 14jacobi的椭圆函数
第四册:1 线性方程组与行列式 2矩阵的相抵性 3方程的函数 序列 级数 4常系数差分方程与常微分方程
5解的渐近性质 6二次型 7正交群与二次型对 8 体积 9非负方程!
非常感谢各位帮忙! 展开
除此之外还有什么不同?
额 是不是就包含了高等数学和线性代数了,学完这套书就不需要在学高数和线性代数?
内容如下!(四册书大概超过1500页了)
第一册:1实数与负数.2向量代数 3函数与图像4极限5微分6微商的应用7函数Taylor展开式 8 方程的近似解9不定积分10定积分
第二册:11积分学的应用 12多个变量的函数 13带变量的序列,数级和积分 14曲线的微分性质 15重积分
16线积分 面积分 17纯量场与向量场 18曲面的微分性质 19Fourier级数 20常微分方程组
第三册:1复数平面上的几何 2非欧几何学 3解析函数,调和函数的定义及例子 4调和函数 5点集论和拓扑学中的若干预备知识 6 解析函数 7留数及其应用定积分计算 8最大模原与函数族 9整函数与亚纯函数 10 保角变换 11 求和法 12适合各种边界条件的调和函数 13 椭圆函数论 14jacobi的椭圆函数
第四册:1 线性方程组与行列式 2矩阵的相抵性 3方程的函数 序列 级数 4常系数差分方程与常微分方程
5解的渐近性质 6二次型 7正交群与二次型对 8 体积 9非负方程!
非常感谢各位帮忙! 展开
3个回答
展开全部
看你学什么专业了,数学系还分专业呢,应用数学就不学拓扑啊
这本书肯定是不够的
我列出一些基本上属于必修的科目,你自己到书店看看
数学分析-复变函数-实变函数-概率论-数理统计-泛函分析-微分几何
常微分方程-偏微分方程
高等代数与空间解析几何-抽象代数-拓扑
国外:
数学专业核心基础课程(本科)
(其中打*号的是相关工科的必读科目)
1.分析学:
【实分析】*
【泛函分析】
【调和分析】
【微分方程】*
2.几何学:
【微分几何】
3.拓扑学:
【一般拓扑】*
【代数拓扑】
【微分拓扑】
4.代数学:
【模论】*
【范畴论】
【高等线性代数】
【代数数论】
【解析数论】
【椭圆曲线论】
5.概率论:
【应用概率论】*
【随机过程】
6.密码应用:
【椭圆曲线公钥密码系统】
7.数学基础
【数理逻辑】
【集合论】
这本书肯定是不够的
我列出一些基本上属于必修的科目,你自己到书店看看
数学分析-复变函数-实变函数-概率论-数理统计-泛函分析-微分几何
常微分方程-偏微分方程
高等代数与空间解析几何-抽象代数-拓扑
国外:
数学专业核心基础课程(本科)
(其中打*号的是相关工科的必读科目)
1.分析学:
【实分析】*
【泛函分析】
【调和分析】
【微分方程】*
2.几何学:
【微分几何】
3.拓扑学:
【一般拓扑】*
【代数拓扑】
【微分拓扑】
4.代数学:
【模论】*
【范畴论】
【高等线性代数】
【代数数论】
【解析数论】
【椭圆曲线论】
5.概率论:
【应用概率论】*
【随机过程】
6.密码应用:
【椭圆曲线公钥密码系统】
7.数学基础
【数理逻辑】
【集合论】
展开全部
《高等数学引论》(共四卷) 华罗庚著
别看是“引论”,以为讲的东西似乎不是什么重要的,其实这套书(也没有完成最初的计划)的原稿是六十年代初华先生在王元先生的辅助下对科大学生开课时的讲义。那时候他们是一个教授负责一届学生的教学(另外两位负责过一届学生的是关肇直和吴文俊),所以华先生的这本书里面涉及有很多方面的知识的。也是出于一种尝试吧,华先生这书里面有一些不属于传统教学内容的东西,还包括一些应用,可以一读。作为教科书来说,内容多了,因此最好作为课外兴趣阅读。
其中前三卷(册)属于数学分析的所有内容,第四卷(册)主要介绍代数矩阵论的基本理论及其应用。
-----引用自网上高等数学贴吧某贴
别看是“引论”,以为讲的东西似乎不是什么重要的,其实这套书(也没有完成最初的计划)的原稿是六十年代初华先生在王元先生的辅助下对科大学生开课时的讲义。那时候他们是一个教授负责一届学生的教学(另外两位负责过一届学生的是关肇直和吴文俊),所以华先生的这本书里面涉及有很多方面的知识的。也是出于一种尝试吧,华先生这书里面有一些不属于传统教学内容的东西,还包括一些应用,可以一读。作为教科书来说,内容多了,因此最好作为课外兴趣阅读。
其中前三卷(册)属于数学分析的所有内容,第四卷(册)主要介绍代数矩阵论的基本理论及其应用。
-----引用自网上高等数学贴吧某贴
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我觉得不差什么,已经很全面了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询