求解根号下(5-4x-x^2)的不定积分 希望重要过程详细点.谢谢
1个回答
展开全部
∫√(5-4x-x^2)dx
=∫√[9-(x+2)^2]dx
x+2=3sinu dx=d(x+2)=d3sinu=3cosudu
=∫9cosu^2du
=(9/2)∫(1+cos2u)du
=(9/2)u+(9/4)sin2u+C
=(9/2)u+(9/2)sinucosu+C
=(9/2)arcsin[(x+2)/3] +(9/2)[(x+2)/3]√(1-(x+2)^2/9) +C
=(9/2)arcsin[(x+2)/3] +(1/2)(x+2)√(5-4x-x^2) +C
=∫√[9-(x+2)^2]dx
x+2=3sinu dx=d(x+2)=d3sinu=3cosudu
=∫9cosu^2du
=(9/2)∫(1+cos2u)du
=(9/2)u+(9/4)sin2u+C
=(9/2)u+(9/2)sinucosu+C
=(9/2)arcsin[(x+2)/3] +(9/2)[(x+2)/3]√(1-(x+2)^2/9) +C
=(9/2)arcsin[(x+2)/3] +(1/2)(x+2)√(5-4x-x^2) +C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询