求大神,这一题怎么写啊?
2个回答
展开全部
这是隐函激枯数求二阶导问题,具体步骤如下:
xy=e^(x+y)
两边对x求导派键得:
y+xy'=e^(x+y)(1+y')
xy'-e^(x+y)y'=e^(x+y)-y
y'=[e^(x+y)-y]/明羡洞[x-e^(x+y)]
=(xy-y)/(x-xy)
则:
y"=[(y+xy'-y‘)(x-xy)-(xy-y)(1-y-xy')]/(x-xy)^2
=[(y+(x-1)y')(1-y)x-y(x-1)(1-y-xy‘)]/(x-xy)^2
=y[(1-y)^2+(x-1)^2(1-y)+y(x-1)^2]/(x-xy)^2
注意函数商的求导。
xy=e^(x+y)
两边对x求导派键得:
y+xy'=e^(x+y)(1+y')
xy'-e^(x+y)y'=e^(x+y)-y
y'=[e^(x+y)-y]/明羡洞[x-e^(x+y)]
=(xy-y)/(x-xy)
则:
y"=[(y+xy'-y‘)(x-xy)-(xy-y)(1-y-xy')]/(x-xy)^2
=[(y+(x-1)y')(1-y)x-y(x-1)(1-y-xy‘)]/(x-xy)^2
=y[(1-y)^2+(x-1)^2(1-y)+y(x-1)^2]/(x-xy)^2
注意函数商的求导。
2019-11-22 · 知道合伙人教育行家
关注
展开全部
xy=e^(x+y)
求导,y+xy'=e^(x+y) * (1+y')
解得 y'=[x - e^(x+y)] / [e^(x+y) - y]
上式继续求导,陪凯得
y'+y'+xy''=芦嫌唤e^(x+y) * (1+y')²+e^(x+y) * y'',
解出者槐 y'' 即可(其中 y' 可由上式代入)
求导,y+xy'=e^(x+y) * (1+y')
解得 y'=[x - e^(x+y)] / [e^(x+y) - y]
上式继续求导,陪凯得
y'+y'+xy''=芦嫌唤e^(x+y) * (1+y')²+e^(x+y) * y'',
解出者槐 y'' 即可(其中 y' 可由上式代入)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询