(1+x)^a的泰勒展开式

 我来答
弈轩
2017-11-14 · 知道合伙人教育行家
弈轩
知道合伙人教育行家
采纳数:1029 获赞数:7542
电子设计大赛三等奖 优秀毕业生

向TA提问 私信TA
展开全部

一、分析与解答

1.1)分析:函数的泰勒展开式要以某点为中心展开,若以原点(x=0)为中心展开,则为泰勒级数的特殊形式——麦克劳林公式,若没有考虑以x=x0,x0可以为任意值的情况,则不算完整解答了该函数的泰勒展开式。

1.2)答:函数(1+x)^(-1)以x=x0为中心的泰勒展开式如下图所示:

二、泰勒级数的展开方法

泰勒级数是用一类无限项连加式来表达函数的级数。若表达式为x的幂级数,则称为麦克劳林级数,为泰勒级数的特殊形式。泰勒展开式公式如图所示:

三、推导过程

3.1)求(1+x)^(-1)的高阶导数表达式,用于求其泰勒展开式,如下图:

3.2)代入泰勒展开式公式①和该函数的高阶导数公式②,得:(如图)

四、泰勒级数的用途

4.1)求函数的数值

对于1/(1+x)而言,此函数本身就较为简单,直接计算即可。但对于一些定义复杂的函数,如三角函数,则其一般函数值的精确计算要依赖于泰勒级数。举例如图所示:

需要注意的是:sin1为无理数,就如同π一样,只能精确到有限位。利用泰勒公式,可以将很多复杂的函数(有些特殊的函数例外)转化为只有加减乘除的式子进行计算,而且计算精度可以确定。著名的圆周率π现代的数值算法,也应用了泰勒级数的原理。

4.2)数学理论分析和计算

泰勒级数展开式将简单的函数式子化为无穷多项幂函数,看似化简为繁。但事实上泰勒级数可以解决很多数学问题。

如:①求极限时可以用函数的麦克劳林公式(泰勒展开式的特殊形式);

②一些难以积分的函数,将函数泰勒展开变为幂级数,使其容易积分;

③复杂离散函数的多项式拟合,用于统计学和预测算法;

④一些数学证明,有时需要将复杂函数化为格式高度统一的幂级数来证明。

此类例子数不胜数,不可能一一列举。

(插图用绿色背景展示,以证明其为本人编辑。)

谬图张廖元彤
2020-04-27 · TA获得超过1237个赞
知道小有建树答主
回答量:1405
采纳率:94%
帮助的人:7.7万
展开全部
1+C(a,1)x+C(a,2)x²+C(a,3)x³+....
=1+ax+a(a-1)/2! x²+a(a-1)(a-2)/3! x³+。。。。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式