设总体X~N(μ,σ^2)X1,X2,X3,X4,试求(X1+X2)^2/(X3-X4)^2的分布

设总体X~N(μ,σ^2),X1,X2,X3,X4来自其中,试求(X1+X2)^2/(X3-X4)^2的分布... 设总体X~N(μ,σ^2),X1,X2,X3,X4来自其中,试求(X1+X2)^2/(X3-X4)^2的分布 展开
 我来答
西禾学姐
高粉答主

2020-05-30 · 醉心答题,欢迎关注
知道小有建树答主
回答量:1733
采纳率:100%
帮助的人:64.6万
展开全部

设总体X~N(μ,σ^2)X1,X2,X3,X4是来自该总体的一个样本,求样本方差介于(X1+X2)^2/(X3-X4)^2的分布之间的概率

样本方差Sn运用定理(n-1)Sn^2/σ^2服从自由度为(n-1)的χ方分布

代入数据(9-1)*6/16=3 (9-1)*14/16=7

查表+线性插入计算得P(X1+X2)^2/(X3-X4)^2=0.562

所以P=0.932-0.562=0.37

扩展资料

样本方差可以理解成是对所给总体方差的一个无偏估计。E(S^2)=DX。

n-1的使用称为贝塞尔校正,也用于样本协方差和样本标准内偏差(方差平方根)。 平方根是一个凹函数,因此引入负偏差(由Jensen不等式),这取决于分布,因此校正样本标准偏差(使用贝塞尔校正)有偏差。

标准偏差的无偏估计是一个技术上涉及的问题,尽管对于使用术语n-1.5的正态分布,形成无偏估计。

无偏样本方差是函数(y1,y2)=(y1-y2)2/2的U统计量,这意味着它是通过对群体的两个样本统计平均得到的。

茹翊神谕者

2022-01-10 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:75%
帮助的人:2497万
展开全部

简单分析一下即可,详情如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式