请问这两道高数题怎么做呢? 麻烦写一下过程 谢谢
2个回答
展开全部
(1)。由x²+y²=2z和z=2所围立体的体积。
解:由x+y=2z和z=2所围立体是一个顶点在原点,以z轴为轴线,高h=2,底面半径R=2的旋
转抛物面。其体积V可用柱坐标计算:x=rcosθ,y=rsinθ,z=z;0≦θ≦2π;0≦r≦√(2z);
0≦z≦2;V=∫<0,2π>dθ∫<0,2>dz∫<0,√(2z)>rdr=2π∫<0,2>[r²/2]<0,√(2z>dz
=2π∫<0,2>zdz=2π[z²/2]<0,2>=4π;
(2). <D>∫∫√(R²-x²-y²)dxdy;{D={(x,y)∣x²+y²≦Ry,R>0}={(x,y)∣x²+(y-R/2)²≦R²/4};
【积分域D是一个园心在(0,R/2),半径为R/2的园。将积分域化为极坐标:D(r,θ)∣0≦θ≦π,
0≦r≦Rsinθ}】
=2∫<0,π/2>dθ∫<0,Rsinθ>[√(R²-r²)]rdr=-∫<0,π/2>dθ∫<0,Rsinθ>√(R²-r²)•d(R²-r²)
=-∫<0,π/2>[(2/3)(R²-r²)^(3/2)∣<0,Rsinθ>dθ=-(2/3)∫<0,π/2>[(R²-R²sin²θ)^(3/2)-R³]dθ
=-(2/3)R³∫<0,π/2>(cos³θ-1)dθ=(2/3)R³∫<0,π/2>(1-cos³θ)dθ
=(2/3)R³[θ∣<0,π/2>-∫<0,π/2>cos³θdθ]=(2/3)R³[(π/2)-∫<0,π/2>(1-sin²θ)d(sinθ)]
=(2/3)R³{(π/2)-[sinθ-(1/3)sin³θ]<0,π/2>}=(2/3)R³[(π/2)-(1-1/3)]=[(π/3)-(4/9)]R³;
(3).<D>∫∫[(1+xy)/(1+x²+y²)]dxdy
【D={(x,y)∣x²+y²≦1,x≧0】=【D(r,θ)∣0≦r≦1,-π/2≦θ≦π/2】
=∫<-π/2,π/2>dθ∫<0,1>[(1+r²sinθcosθ)/(1+r²)]rdr
=∫<-π/2,π/2>dθ{∫<0,1>[r/(1+r²)]dr+∫<0,1>[r³sinθcosθ/(1+r²)]dr}
=∫<-π/2,π/2>{∫<0,1>[r/(1+r²)]dr+sinθcosθ∫<0,1>[r-r/(1+r²)]dr}dθ
=∫<-π/2,π/2>{(1/2)ln(1+r²)∣<0,1>+sinθcosθ[(1/2)r²-(1/2)ln(1+r²)]<0,1>dθ
=∫<-π/2,π/2>{(1/2)ln2+(sinθcosθ)[1/2-(1/2)ln2}dθ
=[(1/2)(ln2)θ∣<-π/2,π/2>+[(1/2)-(1/2)ln2]∫<-π/2,π/2>sinθd(sinθ]
=(π/2)ln2+[(1/2)-(1/2)ln2][(1/2)sin²θ]<-π/2,π/2>
=(π/2)ln2+[(1/2)-(1/2)ln2][(1/2)-(1/2)]=(π/2)ln2;
解:由x+y=2z和z=2所围立体是一个顶点在原点,以z轴为轴线,高h=2,底面半径R=2的旋
转抛物面。其体积V可用柱坐标计算:x=rcosθ,y=rsinθ,z=z;0≦θ≦2π;0≦r≦√(2z);
0≦z≦2;V=∫<0,2π>dθ∫<0,2>dz∫<0,√(2z)>rdr=2π∫<0,2>[r²/2]<0,√(2z>dz
=2π∫<0,2>zdz=2π[z²/2]<0,2>=4π;
(2). <D>∫∫√(R²-x²-y²)dxdy;{D={(x,y)∣x²+y²≦Ry,R>0}={(x,y)∣x²+(y-R/2)²≦R²/4};
【积分域D是一个园心在(0,R/2),半径为R/2的园。将积分域化为极坐标:D(r,θ)∣0≦θ≦π,
0≦r≦Rsinθ}】
=2∫<0,π/2>dθ∫<0,Rsinθ>[√(R²-r²)]rdr=-∫<0,π/2>dθ∫<0,Rsinθ>√(R²-r²)•d(R²-r²)
=-∫<0,π/2>[(2/3)(R²-r²)^(3/2)∣<0,Rsinθ>dθ=-(2/3)∫<0,π/2>[(R²-R²sin²θ)^(3/2)-R³]dθ
=-(2/3)R³∫<0,π/2>(cos³θ-1)dθ=(2/3)R³∫<0,π/2>(1-cos³θ)dθ
=(2/3)R³[θ∣<0,π/2>-∫<0,π/2>cos³θdθ]=(2/3)R³[(π/2)-∫<0,π/2>(1-sin²θ)d(sinθ)]
=(2/3)R³{(π/2)-[sinθ-(1/3)sin³θ]<0,π/2>}=(2/3)R³[(π/2)-(1-1/3)]=[(π/3)-(4/9)]R³;
(3).<D>∫∫[(1+xy)/(1+x²+y²)]dxdy
【D={(x,y)∣x²+y²≦1,x≧0】=【D(r,θ)∣0≦r≦1,-π/2≦θ≦π/2】
=∫<-π/2,π/2>dθ∫<0,1>[(1+r²sinθcosθ)/(1+r²)]rdr
=∫<-π/2,π/2>dθ{∫<0,1>[r/(1+r²)]dr+∫<0,1>[r³sinθcosθ/(1+r²)]dr}
=∫<-π/2,π/2>{∫<0,1>[r/(1+r²)]dr+sinθcosθ∫<0,1>[r-r/(1+r²)]dr}dθ
=∫<-π/2,π/2>{(1/2)ln(1+r²)∣<0,1>+sinθcosθ[(1/2)r²-(1/2)ln(1+r²)]<0,1>dθ
=∫<-π/2,π/2>{(1/2)ln2+(sinθcosθ)[1/2-(1/2)ln2}dθ
=[(1/2)(ln2)θ∣<-π/2,π/2>+[(1/2)-(1/2)ln2]∫<-π/2,π/2>sinθd(sinθ]
=(π/2)ln2+[(1/2)-(1/2)ln2][(1/2)sin²θ]<-π/2,π/2>
=(π/2)ln2+[(1/2)-(1/2)ln2][(1/2)-(1/2)]=(π/2)ln2;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询