证明三角形全等的方法有哪些?
2个回答
展开全部
边边边:三边对应相等的两个三角形全等;边角边:两边和它们夹角对应相等的两个三角形全等;角边角公理(ASA):两角和它们的夹角对应相等的两个三角形全等;角角边:两个角和其中一角的对边对应相等的两个三角形全等;斜边直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。
扩展资料:
三角形基本简介
在同一平面内,由不在同一条直线的三条线段首尾相接所得的封闭图形。
三角形三个内角的和等于180度。
三角形任何两边的和大于第三边。
三角形任意两边之差小于第三边。
三角形的外角等于与它不相邻的两个内角的和。
三角形按角度分类
a.锐角三角形:三个角都小于90度。
b.直角三角形:简称Rt△,其中一个角等于90度。
c.钝角三角形:其中一个角一定大于90度,钝角大于九十度且小于一百八十度。
其中锐角三角形和钝角三角形统称为斜三角形。
三角形按边分类
不等边三角形:3条边都不相等。
等腰三角形:有2条边相等。
等边三角形:3条边都相等。
三角形判定方法
若一个三角形的三边a,b,c(a<b<c)满足
a^2+b^2>c^2,则这个三角形是锐角三角形;
a^2+b^2=c^2,则这个三角形是直角三角形;
a^2+b^2<c^2,则这个三角形是钝角三角形。
展开全部
一、边边边(SSS)边边边定理,简称SSS,是平面几何中的重要定理之一。边边边定理的内容是:有三边对应相等的两个三角形全等。它用于证明两个三角形全等。该定理最早由欧几里得证明。二、边角边(SAS)各三角形的其中两条边的长度都对应相等,且这两条边的夹角(即这两条边组成的角)都对应相等的话,该两个三角形就是全等三角形。三、角边角(ASA)两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。角边角是三角形全等的判定方法之一,需要注意的是角边角中的边必须是两个角公共的一条边(一个角是由两条边组成的,三角形中的任意两个角都有一条公共边)。四、角角边(AAS)角边角是指两个角和这两个角的公共边,角边角定理可以推出全等。角角边是指两个角和另外一个非公共边,角角边也可以推出全等。五、直角边(HL)HL定理是证明两个直角三角形全等的定理,通过证明两个直角三角形直角边和斜边对应相等来证明两个三角形全等。判定定理为:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为HL)是一种特殊判定方法,可转换为ASA
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |