sinx和cosx的相互转化是怎么样的?

 我来答
小琪聊塔罗牌
高粉答主

2021-04-30 · 小琪带你一起去聊塔罗星座。
小琪聊塔罗牌
采纳数:905 获赞数:50730

向TA提问 私信TA
展开全部

cosx和sinx的转换公式为:

sinx=±√(1-cosx∧2)

cosx=±√(1-sinx∧2),

sin(π/2+x)=cosx,

cos(π/2+x)=—sinx等

证明:sinx∧2+cosx∧2=1,

移项得:sinx∧2=1-cosx∧2,

开平方得sinx=±√(1-cosx∧2)。

同理sinx∧2+cosx∧2=1,

移项得cosx∧2=1-sinx∧2,

开平方得cosx=±√(1-sinx∧2)。

诱导公式:

1、sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

2、sin(π/2-α)=cosα

3、cos(π/2-α)=sinα

4、tan(π/2-α)=cotα

5、cot(π/2-α)=tanα

6、sin(π/2+α)=cosα

7、cos(π/2+α)=-sinα

8、tan(π/2+α)=-cotα

9、cot(π/2+α)=-tanα sin(π-α)=sinα

10、cos(π-α)=-cosα

11、tan(π-α)=-tanα

12、cot(π-α)=-cotα

13、sin(π+α)=-sinα

14、cos(π+α)=-cosα

你好啊故事
2023-07-31 · 超过27用户采纳过TA的回答
知道答主
回答量:147
采纳率:91%
帮助的人:4.3万
展开全部
sinx和cosx是三角函数中的两个基本函数,它们之间可以通过一些基本的三角恒等式相互转化。以下是一些常见的转化公式:
1. sinx = cos(π/2 - x):这个公式表明,当x和π/2 - x之和为π/2时,sinx和cosx的值相等。
2. cosx = sin(π/2 - x):这个公式和第一个公式类似,当x和π/2 - x之和为π/2时,cosx和sinx的值相等。
3. sin^2x + cos^2x = 1:这个公式是三角函数中最基本的恒等式之一,表明对于任意一个角度x,sinx的平方加上cosx的平方等于1。
4. tanx = sinx/cosx:这个公式表示tanx可以通过sinx和cosx的比值来计算。
5. cotx = cosx/sinx:这个公式表示cotx可以通过cosx和sinx的比值来计算。
6. secx = 1/cosx:这个公式表示secx可以通过cosx的倒数来计算。
7. cscx = 1/sinx:这个公式表示cscx可以通过sinx的倒数来计算。
以上是一些常见的sinx和cosx相互转化的公式,通过这些公式可以方便地计算和转化三角函数的表达式。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
云剖N
2023-07-16 · TA获得超过181个赞
知道大有可为答主
回答量:3762
采纳率:0%
帮助的人:76.1万
展开全部

①知识点定义来源&讲解:

sin(x)和cos(x)是三角函数中的两个基本函数,它们之间存在着特定的关系。这两个函数的相互转化可以通过三角恒等式来实现。

sin(x)和cos(x)的关系可以通过单位圆的定义和性质来解释。在单位圆上,角度x对应于圆上的一个点,该点到单位圆上的原点的距离为1。那么,sin(x)可以被定义为该点的y坐标,而cos(x)可以被定义为该点的x坐标。

②知识点运用:

sin(x)和cos(x)的相互转化在数学、物理学、工程等领域都有广泛应用。它们可以用于解决三角函数相关的问题和计算,例如在三角方程、几何图形、波动现象、信号处理等方面的应用。

③知识点例题讲解:

例题:将cos(x)转化为sin(x)。

解答:我们可以利用三角恒等式cos²(x) + sin²(x) = 1来进行转化。

将该恒等式改写为cos²(x) = 1 - sin²(x)。

利用开方运算可得cos(x) = √(1 - sin²(x))。

因此,cos(x)可以通过sin(x)来转化。

例题:将sin(x)转化为cos(x)。

解答:同样地,我们可以利用三角恒等式cos²(x) + sin²(x) = 1来进行转化。

将该恒等式改写为sin²(x) = 1 - cos²(x)。

利用开方运算可得sin(x) = √(1 - cos²(x))。

因此,sin(x)可以通过cos(x)来转化。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
神奇的狗子2
2023-07-14 · 超过94用户采纳过TA的回答
知道小有建树答主
回答量:765
采纳率:100%
帮助的人:10.8万
展开全部
sin(x)和cos(x)是三角函数中最基本的两个函数,它们之间存在一种相互转化的关系。

根据三角恒等式,我们知道:

sin^2(x) + cos^2(x) = 1

从这个恒等式可以得到:

sin^2(x) = 1 - cos^2(x)

通过开方,我们可以得到:

sin(x) = ±√(1 - cos^2(x))

根据三角函数的定义,sin(x)和cos(x)的取值范围是[-1, 1],因此,我们可以确定:

当sin(x)取正值时,有sin(x) = √(1 - cos^2(x))

当sin(x)取负值时,有sin(x) = -√(1 - cos^2(x))

同样地,我们也可以通过类似的推导得到:

cos(x) = ±√(1 - sin^2(x))

当cos(x)取正值时,有cos(x) = √(1 - sin^2(x))

当cos(x)取负值时,有cos(x) = -√(1 - sin^2(x))

综上所述,sin(x)和cos(x)之间的相互转化可以通过三角恒等式来实现。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式