一道平面几何题!

已知:AB是圆的直径,弦CD丄AB,垂足为E,∠CDB=30°,CD=2√3,求阴影面积。... 已知:AB是圆的直径,弦CD丄AB,垂足为E,∠CDB=30°,CD=2√3,求阴影面积。 展开
 我来答
杨建朝老师玩数学
高粉答主

2021-10-26 · 中小学教师,杨建朝,蒲城县教研室蒲城县教育学会、教育领域创作...
个人认证用户
杨建朝老师玩数学
采纳数:16639 获赞数:37808

向TA提问 私信TA
展开全部
连接OD
有题意可得所求阴影面积为扇形BOD的面积。
因为有条件角30°,可以得∠B=60°
所以∠DOB=60°
CD=2√3,因为三角形BOD为中三角形,正三角形的高为√3,则OD=2

所以扇形BOB面积为1/6×4×π=2π/3
追问
正确
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
上海华然企业咨询
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支... 点击进入详情页
本回答由上海华然企业咨询提供
明天更美好007

2021-10-26 · 不忘初心,方得始终。
明天更美好007
采纳数:3328 获赞数:10605

向TA提问 私信TA
展开全部
解:连接OD
∵<CDB=30度
∴<COB=2<CDB=60度
∵AB是圆的直径,且CD丄AB
∴CE=ED
∵CD=2√3
∴CE=√3
∴在Rt△COE中,OC=2,即⊙O的R=2
∵OC=OD,CE=ED,OE=OE
∴△COE≌△DOE
∴S△COE=S△DOE
∴S△COE+S^EBD
=S△DOE+S^EBD
=S⊙o/4=丌R^2/4=丌=3.14
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式