展开全部
展开全部
等比数列前n项和公式为Sn =a1(1-q^n)/(1-q)。
推导如下:
因为an = a1q^(n-1)
所以Sn = a1+a1*q^1+...+a1*q^(n-1) (1)
qSn =a1*q^1+a1q^2+...+a1*q^n (2)
(1)-(2)注意(1)式的第一项不变。
把(1)式的第二项减去(2)式的第一项。
把(1)式的第三项减去(2)式的第二项。
以此类推,把(1)式的第n项减去(2)式的第n-1项。
(2)式的第n项不变,这叫错位相减,其目的就是消去这此公共项。
于是得到
(1-q)Sn = a1(1-q^n)
即Sn =a1(1-q^n)/(1-q)。
扩展资料
等比数列性质
1、若 m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;
2、在等比数列中,当q≠-1,或q=-1且k为奇数时,依次每 k项之和仍成等比数列。
“G是a、b的等比中项”“G^2=ab(G≠0)”。
3、在等比数列中,首项a1与公比q都不为零.
参考资料来源:百度百科—等比数列公式
本回答被网友采纳
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询