已知f(x)在-π到0等于-x,在0到π等于x.求∫(0到π) f(x)cosnxdx=

 我来答
大沈他次苹0B
2022-07-05 · TA获得超过7301个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:174万
展开全部
f(x)在0到π等于x
原式=∫(0到π) f(x)cosnxdx=∫(0到π) xcosnxdx
∫xcosnxdx=1/n∫xd(sinnx)
=1/n[xsinnx-∫sinnxdx]
=xsinnx)/n-1/n^2∫sinnxd(nx)
=(xsinnx)/n+1/n^2 * (cosnx)+C
因此:
原式=0+1/n^2*cos(πn)-1/n^2*cos(0)
=cos(πn) / n^2-1/n^2
=[cos(πn)-1]/n^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式