两个重要极限公式

 我来答
内蒙古恒学教育
2022-11-10 · 专注于教育培训升学规划
内蒙古恒学教育
向TA提问
展开全部
lim((sinx)/x)=1(x->0),lim(1+(1/x))^x=e(x→∞)。
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。
极限思想方法,是数学分析乃至全部高等数学必不可少的一种重要方法,也是‘数学分析’与在‘初等数学’的基础上有承前启后连贯性的、进一步的思维的发展。
热爱学习的小恒
2022-05-26 · 专注学前教育相关问答
热爱学习的小恒
向TA提问
展开全部

第一个重要极限公式是:1im((sinx)/x)=1(x->0),第二个重要极限公式是:1im(1+(1/x))^x=e(x+oo)。

极限的求法:

1、连续初等函数,在定义域范固内求极限,可以将该点直接代入得极限值,[因为连续函数的极限值就等于在该点的函数值。

2、利用恒等变形消去零因子(针对于0/0型)

3、利用无穷大与无穷小的关系求极限。

4、利用无穷小的性质求极限。

5、利用等价无穷小替换求极限,可以将原式化简计算。

6、利用两个极限存在准则,求极限,有的题目也可以考虚用放大缩小,再用夹逼定理的方法求极限。

用极限思想解决问题的一般步骤:

对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的'响趋势性结果就是非常精密的约等于所求的未知量:用极限原理就可以计算得到被考察的末知量的结果。

极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计。

极限思想方法,是数学分析乃至全部高等数学必不可少的一种重要方法,也是数学分析与在初等数学的基础上有承前启后连贯性的、进一步的思维的发展。数学分析之所以能解决许多初等数学无法解决的问题(例如求瞬时速度、曲线弧长、曲边形面积、曲面体的体积等问题),正是由于其采用了极限’的无限逼近才能够得到无比精确的计算答案。

人们通过考察某些函数的一连串数不清的越来越精密的近似值的趋向,趋势,可以科学地把那个量的极准确值确定下来,这需要运用极限的慨念和以上的极限思想方法。要相信,用极限的思想方法是有科学性的,因为可以通过极限的函数计算方法得到极为准确的结论。


极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。

极限的概念最终由柯西和魏尔斯特拉斯等人严格阐述。在现代的数学分析教科书中,几乎所有基本概念(连续、微分、积分)都是建立在极限概念的基础之上。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式