x^2y-xy^2+y^3/x=e^z,求∂z/∂y|(1,1)=
1个回答
展开全部
x^2.y-x.y^2+ (1/x)y^3=e^z
e^[z(1,1)]= 1 -1 +1 =1
z(1,1) =e
x^2.y-x.y^2+ (1/x)y^3=e^z
∂/∂y[x^2.y-x.y^2+ (1/x)y^3] = ∂/∂y (e^z)
e^z .∂z/∂y = x^2 - 2xy + (3/x)y^2
∂z/∂y = [(x^2 - 2xy + (3/x)y^2]/e^z
∂z/∂y|(1,1)
=0
e^[z(1,1)]= 1 -1 +1 =1
z(1,1) =e
x^2.y-x.y^2+ (1/x)y^3=e^z
∂/∂y[x^2.y-x.y^2+ (1/x)y^3] = ∂/∂y (e^z)
e^z .∂z/∂y = x^2 - 2xy + (3/x)y^2
∂z/∂y = [(x^2 - 2xy + (3/x)y^2]/e^z
∂z/∂y|(1,1)
=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询