
arcsinx+arccosx等于什么
1个回答
展开全部
arcsinx+arccosx=π/2。
设f(x)=arcsinx+arccosx。
求导:f'(x)=1/根号(1-x^2)-1/根号(1-x^2)=0。
因为导函数等于0,所以f(x)是常系数函数。
即f(x)=a,x=0时。
f(0)=arcsin0+arccos0=π/2。
所以恒等式成立。
arcsinx和arccosx是什么?
arcsinx表示的是反三角函数y=sinx (-π/2<x<π/2)的反函数。(这函数说白了就是你知道sinx的值了,现在想求 什么 角度的正弦等于这个值)。
arccos表示的是反三角函数中的反余弦。一般用于表示当角度为非特殊角时。由于是多值函数,往往取它的单值,值域为[0,π],记作y=arccosx,我们称它叫做反三角函数中的反余弦函数的主值。

2025-09-16 广告
联韬企业管理咨询有限公司是专注在供应链管理和运营管理领域的培训咨询机构,承办CPIM/CSCP/CLTD/SCOR DS认证项目的教育培训及考试管理,为企业和个人提供教育培训,专业认证考试和咨询指导服务。帮助企业实施和改进管理流程;提高管理...
点击进入详情页
本回答由上海联韬企业提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询