不定积分∫dx/x²得多少?
2个回答
展开全部
1.考导数与积分之间的关系,可以:F‘(x)=(F(x)+C)的导数=(积分式子)的导数,积分式子本身是连续的,所以应该选择B
2.算个积分,也就是对f(x)积分,不解释了,A
3.也就是对右边的式子求导,得到e的x/2次方,即A
4.先进性变量替换,令t=x平方,化成f'(t)=t的1/2次方,积分得到f(t)=2t的1/2次方+c,f(t)其实和f(x)一样的,所以选B
5.即F(x)=x²+C,于是利用分部积分方式,有:∫xf(x)dx=∫xdF(x)=xF(x)-∫F(x)dx,将F(x)带入并计算得到:原积分=x^3+cx-(1/3)x^3-cx+C=(2/3)x^3+C,即答案C
6.排除法可以解决,A、B显然差常数C不成立,D多了常数,因为积分结果只可能出来f(x)的原函数,只能含有一个常数,求导后会为0,故选C
7.排除法,A差(1/2),B正确,C中的(1/2)应为x,D显然错误,故选B
8.变量替换之后直接计算,令t=2x+1,对x积分和对t积分是一样的,之后可以得到结果应为B
9.AB,取t=2x然后计算,没什么可解释的
10.和的积分=积分的和,所以对1积分结果为x+C,对2的x次方积分结果为:取t=2的x次方,代换变量后计算得到D结果,选D
2.算个积分,也就是对f(x)积分,不解释了,A
3.也就是对右边的式子求导,得到e的x/2次方,即A
4.先进性变量替换,令t=x平方,化成f'(t)=t的1/2次方,积分得到f(t)=2t的1/2次方+c,f(t)其实和f(x)一样的,所以选B
5.即F(x)=x²+C,于是利用分部积分方式,有:∫xf(x)dx=∫xdF(x)=xF(x)-∫F(x)dx,将F(x)带入并计算得到:原积分=x^3+cx-(1/3)x^3-cx+C=(2/3)x^3+C,即答案C
6.排除法可以解决,A、B显然差常数C不成立,D多了常数,因为积分结果只可能出来f(x)的原函数,只能含有一个常数,求导后会为0,故选C
7.排除法,A差(1/2),B正确,C中的(1/2)应为x,D显然错误,故选B
8.变量替换之后直接计算,令t=2x+1,对x积分和对t积分是一样的,之后可以得到结果应为B
9.AB,取t=2x然后计算,没什么可解释的
10.和的积分=积分的和,所以对1积分结果为x+C,对2的x次方积分结果为:取t=2的x次方,代换变量后计算得到D结果,选D
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询