设y1,y2是二阶非齐次线性微分方程的两个特解.证明:y1与y2之比不可能是常数

 我来答
舒适还明净的海鸥i
2022-06-30 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:68.2万
展开全部
证:反证法!
要证y1,y2之比不为常数,即证明y1,y2线性无关!
假设y1,y2线性相关,设y2=ky1,
因为y1,y2是二阶非齐次线性方程的特解,故它们都不是常数0,且因为y1≠y2,所以k≠0,1.
这样,一方面有
y1''+py2'+qy2=f(x),
另一方面又有
y2''+py2'+qy2=ky1''+pky1=k(y1''+py1'+qy1)=kf(x).
于是有f(x)=kf(x)(k≠0,1),即f(x)≡0,
这与非齐次方程相矛盾,所以假设错误!
因此,
y1,y2线性无关,即y1,y2之比不可能为常数!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式