拉格朗日定理是什么?

 我来答
汀仃
2022-07-01 · TA获得超过759个赞
知道小有建树答主
回答量:168
采纳率:80%
帮助的人:59.2万
展开全部
流体力学中的拉格朗日定理
(Lagrange theorem)

由开尔文定理可直接推论得到拉格朗日定理(Lagrange theorem), 即漩涡不生不灭定理:

正压理想流体在质量力有势的情况下,如果初始时刻某部分流体内无涡,则在此之前或以后的任何时刻中这部分流体皆为无涡。反之,若初始时刻该部分流体有涡,则在此之前或以后的任何时刻中这部分流体皆为有涡。

描述流体运动的两种方法之一:拉格朗日法

拉格朗日法是以研究单个流体质点运动过程作为基础,综合所有质点的运动,构成整个流体的运动。
以某一起始时刻每个质点的坐标位置(a、b、c),作为该质点的标志。
任何时刻任意质点在空间的位置(x、y、z)都可以看成是(a、b、c)和t的函数
拉格朗日法基本特点: 追踪流体质点的运动
优点: 可直接运用固体力学中质点动力学进行分析

微积分中的拉格朗日定理(拉格朗日中值定理
设函数f(x)满足条件:
(1)在闭区间〔a,b〕上连续;
(2)在开区间(a,b)可导;
则至少存在一点ε∈(a,b),使得
f(b) - f(a)
f'(ε)=-------------------- 或者
b-a

f(b)=f(a) + f(ε)'(b - a)
[证明:把定理里面的c换成x在不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x.做辅助函数G(x)=f(x)-{f(b)-f (a)]/(b-a)}x易证明此函数在该区间满足条件:1,G(a)=G(b);2.G(x)在[a,b]连续;3.G(x)在(a,b)可导.此即罗尔定理条件,由罗尔定理条件即证]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式