设f(x)=∫(上限x~下限0) (t-1)dt 求f(x)的极小值
1个回答
展开全部
f(x)=∫(上限x~下限0) (t-1)dt
= [1/2 x^2 - x ] (上限x~下限0)
= 1/2 x^2 - x
f'(x)= x-1
当 x=1时 f‘(x)=0
当 x0
所以
f(x)极小值 为f(1)=-1/2
PS:其实已知变上限积分f(x)=∫(上限x~下限0) (t-1)dt
可以 直接得到 f'(x)= x-1
这里 有个公式 ∫(g(x)到φ(x))f(t)dt 的导数 为 f[φ(x)]φ'(x) - f[g(x)]g'(x)
= [1/2 x^2 - x ] (上限x~下限0)
= 1/2 x^2 - x
f'(x)= x-1
当 x=1时 f‘(x)=0
当 x0
所以
f(x)极小值 为f(1)=-1/2
PS:其实已知变上限积分f(x)=∫(上限x~下限0) (t-1)dt
可以 直接得到 f'(x)= x-1
这里 有个公式 ∫(g(x)到φ(x))f(t)dt 的导数 为 f[φ(x)]φ'(x) - f[g(x)]g'(x)
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询