自适应滤波器的原理
2020-01-18 · 技术研发知识服务融合发展。
设计最佳滤波器,要求已知关于信号和噪声统计特性的先验知识。但在许多情况下人们对此并不知道或知道甚少,某些情况下这些统计特性还是时变的。处理上述这类信号需要采用自适应滤波器。如地球物理信息处理中,地球物理场的趋势分析,即场的滑动窗口处理方法就是典型的自适应滤波器的应用。
自适应信号处理器分为两大类,一类是自适应天线,另一类则是自适应滤波器。微电子技术和超大规模集成(VLS1)电路技术的进步,促进了自适应信号处理技术的发展,使之获得广泛的应用。本节简单介绍一下自适应滤波器的工作原理。
自适应滤波原理:自适应滤波器由参数可调的数字滤波器(或称为自适应处理器)和自适应算法两部分组成,如图3-12所示。参数可调数字滤波器可以是FIR数字滤波器或IIR数字滤波器,也可以是格型数字滤波器。输入信号x(n)通过参数可调数字滤波器后产生输出信号(或响应)y(n),将其与参考信号(或称期望响应)d(n)进行比较,形成误差信号e(n)。e(n)(有时还要利用x(n))通过某种自适应算法对滤波器参数进行调整,最终使e(n)的均方值最小。因此,实际上自适应滤波器是一种能够自动调整本身参数的特殊维纳滤波器,在设计时不需要事先知道关于输入信号和噪声的统计特性的知识,它能够在自己的工作过程中逐渐“了解”或估计出所需的统计特性,并以此为依据自动调整自己的参数,以达到最佳滤波效果。一旦输入信号的统计特性发生变化,它又能够跟踪这种变化,自动调整参数,使滤波器性能重新达到最佳。
图3-12 自适应滤波原理
图3-12所示的自适应滤波器有两个输入:x(n)和d(n),两个输出:y(n)和e(n)。其中x(n)可以是单输入信号,也可以是多输入信号。其余3个信号都是时间序列。在不同的应用场合中这些信号代表着不同的具体内容。
2024-04-16 广告