设函数f(x)在〔0,2〕上连续,且f(0)=f(2),证明,存在x,y在〔0,2〕,y-x=1,使得f(x)=f(y)

 我来答
户如乐9318
2022-05-19 · TA获得超过6658个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:140万
展开全部
设g(x)=f(x)-f(x+1)
则 g(0)=f(0)-f(1)
g(1)=f(1)-f(2)=f(1)-f(0)=-g(0)
所以在[0,1]中必有g(x)=0,即存在x,使得f(x)=f(x+1)=f(y)
得证
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式