矩阵的-1次方是指该矩阵的逆矩阵,该矩阵成为可逆矩阵。矩阵与矩阵的-1次方的乘积为单位矩阵。
设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。
扩展资料:
性质定理
可逆矩阵一定是方阵。
如果矩阵A是可逆的,其逆矩阵是唯一的。
A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)
若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。