求不定积分 (5x-2)/((x-1)^2(2x+1))dx
2个回答
展开全部
设 (5x-2)/[(x-1)^2(2x+1)] = A/(x-1) + B/(x-1)^2 + C/(2x+1)
= [A(x-1)(2x+1)+B(2x+1)+C(x-1)^2]/[(x-1)^2(2x+1)]
A+C = 0
-A+2B-2C = 5
-A+B+C = -2
联立解得 A = 9/5, B = 8/5, C = -9/5
I = (1/5)∫[9/(x-1) + 8/(x-1)^2 - 9/(2x+1)]dx
= (1/5)∫[9ln|x-1| - 8/(x-1) - (9/2)ln|2x+1|] + C
= [A(x-1)(2x+1)+B(2x+1)+C(x-1)^2]/[(x-1)^2(2x+1)]
A+C = 0
-A+2B-2C = 5
-A+B+C = -2
联立解得 A = 9/5, B = 8/5, C = -9/5
I = (1/5)∫[9/(x-1) + 8/(x-1)^2 - 9/(2x+1)]dx
= (1/5)∫[9ln|x-1| - 8/(x-1) - (9/2)ln|2x+1|] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询