已知函数y=sin1/2x+√3cos1/2x,求函数y的单调递减区间?
1个回答
展开全部
用引入辅助角的办法;即提取两系数平方和的平方根化为一个角的一个三角函数;
y=2[(1/2)sin(1/2)x+(√3/2)cos(1/2)x]
=2[sin(1/2)x*cos(π/3)+cos(1/2)x*sin(π/3)]
=2sin[(1/2)x+(π/3)]
再把角; (1/2)x+(π/3)代入到标准正弦的单调减区间中去解出x的过程为:
(π/2)+2kπ≤(1/2)x+(π/3)≤(3π/2)+2kπ
(π/6)+2kπ≤(1/2)x≤(7π/6)+2kπ
(π/3)+4kπ≤x≤(7π/3)+4kπ
所以原函数的单调减区间为:
[(π/3)+4kπ ,(7π/3)+4kπ] (x∈Z),2,原函数可以:
y=2[1/2*sin(1/2x)+√3/2*cos(1/2x)]
=2[cos(π/3)sin(1/2x)+sin(π/3)cos(1/2x)]
=2sin(π/3+1/2X)
然后讨论就可以了。,0,y=2(1/2sin1/2x++√3/2cos1/2x)=2sin(1/2x+π/3),
π/2+2kπ≤ 1/2x+π/3≤3π/2+2kπ
解得π/3+4kπ≤x≤7/3π+4kπ k属于z,0,
y=2[(1/2)sin(1/2)x+(√3/2)cos(1/2)x]
=2[sin(1/2)x*cos(π/3)+cos(1/2)x*sin(π/3)]
=2sin[(1/2)x+(π/3)]
再把角; (1/2)x+(π/3)代入到标准正弦的单调减区间中去解出x的过程为:
(π/2)+2kπ≤(1/2)x+(π/3)≤(3π/2)+2kπ
(π/6)+2kπ≤(1/2)x≤(7π/6)+2kπ
(π/3)+4kπ≤x≤(7π/3)+4kπ
所以原函数的单调减区间为:
[(π/3)+4kπ ,(7π/3)+4kπ] (x∈Z),2,原函数可以:
y=2[1/2*sin(1/2x)+√3/2*cos(1/2x)]
=2[cos(π/3)sin(1/2x)+sin(π/3)cos(1/2x)]
=2sin(π/3+1/2X)
然后讨论就可以了。,0,y=2(1/2sin1/2x++√3/2cos1/2x)=2sin(1/2x+π/3),
π/2+2kπ≤ 1/2x+π/3≤3π/2+2kπ
解得π/3+4kπ≤x≤7/3π+4kπ k属于z,0,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询