怎样用向量表述空间问题的数学关系和几何问题?
1个回答
展开全部
空间向量公式如下:
1、空间向量线面夹角公式是cosθ=(ab的内积)/(|a||b|)。
2、|a|=√(x1^2+y1^2+z1^2),|b|=√(x2^2+y2^2+z2^2)。
3、空间向量的模公式:空间向量(x,y,z),其中x,y,z分别是三轴上的坐标,模长是:²√x²+y²+z²,平面向量(x,y),模长是:²√x²+y²。
空间向量基本定理:
1、共线向量定理
两个空间向量a、b向量,a∥b的充要条件是存在唯一的实数λ,使a=λb。
2、共面向量定理
如果两个向量a、b不共线,则向量c与向量a、b共面的充要条件是:存在唯一的一对实数x、y,使c=ax+by。
3、空间向量分解定理
如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询