高中数学证明垂直的方法

 我来答
甘李柚
2023-01-14 · TA获得超过831个赞
知道大有可为答主
回答量:8894
采纳率:99%
帮助的人:120万
展开全部

高中数学证明垂直的方法如下:

证明线线垂直、线线平行、线面垂直、线面平行、面面垂直、面面平行是高中立体几何经常遇到的问题,它们之间相互联系,相互转化,同时还需要我们进行适当的运算,才能达到目的。我们通过融合前后所学知识点,通过各种方法来完成证明任务,以此达到触类旁通,内化为自己所能.下面介绍一道用多种方法来证明线线垂直的问题,希望能够打通各种证题思路,夯实学习基本功,为您带来一点启示与帮助。

一、问题呈现:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,PA⊥底ABCD,且PA=AD=AB=2BC,M为PG的中点。

(1)求证:PB⊥DM;

(2)求AC与PD所成角的余弦值。

下面着重探究第(1)小问的各种证法,第(2)小问解答从略。

证法一:坐标法。

如图1,以点A为坐标原点,建立如图所示的空间直角坐标系A-xyz,不妨设PA=AD=AB=2BC=4,则A(0,0,0),B(4,0,0),C(4,2,0),D(0,4,0),P(0,0,4),M(2,1,2)。

评析:此法采取“坐标法”来计算向量PB和向量DM的数量积为零来证明PB⊥DM.建立恰当的空间直角坐标系,把相关点的坐标一一表示出来,这里注意到已知线段之间的倍数关系,设较长线段长度为常数4便于用整数来表示所有向量坐标,从而可简化计算.此法要求对相关点必须准确表示,应用好数形结合思想。

证法二:应用一条直线平行于另一条直线所在平面的法向量。

如图2,以点A为坐标原点,建立如图所示的空间直角坐标系A-xyz,不妨设PA=AD=AB=2BC=4,连接AM,则A(0,0,0),B(4,0,0),C(4,2,0),D(0,4,0),P(0,0,4),M(2,1,2)。

评析:我们不难发现AD⊥平面PAB,得到PB⊥AD,又要证此法PB⊥DM,由此可以推断PB⊥平面ADM.于是问题可转化为证PB与平面ADM的法向量是平行向量。

证法三:基向量法。

接上图:

接上图:

评析:此法采取“基向量法”来证明PM⊥DM。先以向量AB、向量AD、向量AD为一组基底向量,且设题设中较长线段的长度为2,然后通过向量运算即可证明。此法多次利用垂直向量的数量积为零的等价性,证明过程直截了当,只需耐心运算就能完成目标。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式