面面垂直的性质定理和判定定理

 我来答
闽百壹拉0f
2023-01-26 · TA获得超过207个赞
知道小有建树答主
回答量:2032
采纳率:98%
帮助的人:30.7万
展开全部

关于面面垂直的性质定理和判定定理如下:

面面垂直。 判定定理:经过一个平面的垂线的平面与该平面垂直。 性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。

一个平面过另一平面的垂线,则这两个平面相互垂直。几何描述:若a⊥β,a⊂α,则α⊥β证明:任意两个平面关系为相交或平行,设a⊥β,垂足为P,那么P∈β

∵a⊂α,P∈a∴P∈α即α和β有公共点P,因此α与β相交。设α∩β=b,∵P是α和β的公共点∴P∈b过P在β内作c⊥b∵b⊂β,a⊥β∴a⊥b,垂足为P又c⊥b,垂足为P

∴∠aPc是二面角α-b-β的平面角∵c⊂β∴a⊥c,即∠aPc=90°根据面面垂直的定义,α⊥β如果一个平面的垂线平行于另一个平面,那么这两个平面互相垂直。

已知α⊥a,a∥β,求证α⊥β证明:过a任意作一个平面γ与β相交,设交线为c∵a∥β∴a∥c(线面平行的性质定理)∵a⊥α∴c⊥α(线面垂直的性质定理)∵c⊂β∴β⊥α(定理1)

如果两个平面的垂线互相垂直,那么这两个平面互相垂直。(可理解为法向量垂直的平面互相垂直)证明:设有a⊥α,b⊥β,且a⊥b则根据线面平行的判定定理,有a∥β

∵a⊥α∴α⊥β(推论1)这些定理和推论都是向量法解题的基础,例如向量法解得一个平面的法向量与另一个平面平行,那么这两个平面就垂直。性质定理

定理1如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。已知:α⊥β,α∩β=l,O∈l,OP⊥l,OP⊂α。求证:OP⊥β。

证明:过O在β内作OQ⊥l,则由二面角知识可知∠POQ是二面角α-l-β的平面角。∵α⊥β∴∠POQ=90°,即OP⊥OQ∵OP⊥l,l∩OQ=O,l⊂β,OQ⊂β∴OP⊥β

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式