向量组线性相关的性质
关于向量组线性相关的性质如下:
对于任一向量组而言,不是线性无关的就是线性相关的。 向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。 包含零向量的任何向量组是线性相关的。 含有相同向量的向量组必线性相关。
在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立[1](linearly independent),反之称为线性相关(linearly dependent)。
例如在三维欧几里得空间R的三个矢量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关;但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。
在向量空间V的一组向量A: ,如果存在不全为零的数 k1, k2, ···,km , 使则称向量组A是线性相关的 ,否则数 k1, k2, ···,km全为0时,称它是线性无关。
由此定义看出 是否线性相关,就看是否存在一组不全为零的数 k1, k2, ···,km使得上式成立。
即看这个齐次线性方程组是否存在非零解,将其系数矩阵化为最简形矩阵,即可求解。此外,当这个齐次线性方程组的系数矩阵是一个方阵时,这个系数矩阵存在行列式为0,即有非零解,从而 线性相关。
注意对于任一向量组而言,,不是线性无关的就是线性相关的。向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。
包含零向量的任何向量组是线性相关的。含有相同向量的向量组必线性相关。增加向量的个数,不改变向量的相关性。(注意,原本的向量组是线性相关的)【局部相关,整体相关】
减少向量的个数,不改变向量的无关性。(注意,原本的向量组是线性无关的)【整体无关,局部无关】
一个向量组线性无关,则在相同位置处都增加一个分量后得到的新向量组仍线性无关。【无关组的加长组仍无关】
一个向量组线性相关,则在相同位置处都去掉一个分量后得到的新向量组仍线性相关。【相关组的缩短组仍相关】
若向量组所包含向量个数等于分量个数时,判定向量组是否线性相关即是判定这些向量为列组成的行列式是否为零。若行列式为零,则向量组线性相关;否则是线性无关的。
2024-11-22 广告