竖直面内的圆周运动
关于竖直面内的圆周运动如下:
对于竖直平面内的圆周运动这个问题可以这样分析:物体受到重力和物体接触的绳子、轨道、杆、管的力,这两个力的合力充当向心力。
“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。
有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。
轻杆长为3L,在杆两端分别固定质量均为m的球A和B,光滑水平转轴穿过杆上距球A为L处的O点,外界给系统一定能量后,杆和球在竖直平面内转动,球B运动到最高点时,杆对球B恰好无作用力。忽略空气阻力。则球B在最高点时
竖直面内的圆周运动首先要明确是“轻杆模型”还是“轻绳模型”,然后分析物体能够到达圆周最高点的临界条件。
速度是联系前后两个过程的关键物理量。【典例1】 如图所示,一条不可伸长的轻绳上端悬挂于O点,下端系一质量m=1.0 kg的小球。现将小球拉到A点
保持轻绳绷直)由静止释放,当它经过B点时轻绳恰好被拉断,小球平抛后落在水平地面上的C点,地面上的D点与OB在同一竖直线上,已知轻绳长 L=1.0 m,B点离地高度 H=1.0 m,A、B两点的高度差h=0.5 m,重力加速度g取10 m/s2,不计空气阻力,