一元二次方程的解法因式分解
关于一元二次方程的解法因式分解如下:
因式分解法解一元二次方程步骤 将方程变形,使方程的右边为零;将方程的左边因式分解; 根据若A·B=0,则A=0或B=0,将解一元二次方程转化为解两个一元一次方程.
一元二次方程的解法有:直接开平方法;烂迅配镇轮方法;公式法;因式分解法。因式分解的几种方法:提公因式法、运饥旅此用公式法、分组分解法、十字相乘法、拆项和添项法、待定系数法、双十字相乘法、轮换对称法等.
直接开平方法:依据的是平方根的意义,步骤是:将方程转化为x=p或(mx+n)=p的形式;分三种情况降次求解:当p>0时;当p=0时;
当p<0时,方程无实数根。需要注意的是:直接开平方法只适用于部分的一元二次方程,它适用的方程能转化为x=p或(mx+n)=p的形式,其中p为常数,当p≥0时,开方时要取“正、负。
二、配方法:把一般形式的一元二次方程ax+bx+c=0(a≥0)左端配成一个含有未知数的完全平方式,右端是一个非负常数,进而可用直接开平方法来求解。一般步骤:移项、二次项系数化成1,配方,开平方根。配方法适用于解所有一元二次方程。
公式法:利用求根公式,直接求解。把一元二次方程的各系数代入求根公式,直接求出方程的解。一般步骤为:把方程化为一般形式;确定a、b、c的值;计算b-4ac的值;(4)当b-4ac≥0时,把a、b、c及b-4ac的值代入一元二次方程的求根公式,求得方程的根;
当b-4ac<0时,方程没有实数根。需要注意的是:公式法是解一元二次方程的一般方法,又叫万能方法,对于任意一个一元二次方程,只要有解,就一定能用求根公式解出来。
求根公式是用配方法解一元二次方程的结果,用它直接解方程避免繁杂的配方过程。因此没有特别要求,一般不会用配方法解方程。