解分式方程的过程
展开全部
解分式方程的过程如下:
去分母:方程两边同时乘以最简公分母,将分式方程化为整式方程;若遇到互为相反数时。需要改变符号。(最简公分母:①系数取最小公倍数②未知数取最高次幂③出现的因式取最高次幂)
移项:若有括号应先去括号,注意变号,合并同类项,把系数化为1,求出未知数的值;
验根:求出未知数值后必须验根,在把分式方程化为整式方程的过程中,可能产生增根。
验根时需把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。若解出的根都是增根,则原方程无解。
如果分式本身约分了,也要代入进去检验。
解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
分式方程是方程中的一种,且分母里含有未知数的(有理)方程叫做分式方程,等号两边至少有一个分母含有未知数。分式方程特征:①一是方程;②二是分母中含有未知数。因此整式方程和分式方程的根本区别就在于分母中是否含有未知数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询