三阶矩阵有三个不同的特征值,这句话对吗?

 我来答
帐号已注销
2023-01-01 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:167万
展开全部

三阶矩阵有三个不同的特征值说明这个矩阵有两个相同的特征值,且矩阵不能对角化,即不存在可逆矩阵p,使p^-1ap为对角矩阵。

证明:由已知,Aα1=λ1α1,Aα2=λ2α2,Aα3=λ3α3

所以Aβ=Aα1+Aα2+Aα3=λ1α1+λ2α2+λ3α3

A^2β=A(Aβ)=λ1Aα1+λ2Aα2+λ3Aα3=λ1^2α1+λ2^2α2+λ3^2α3

所以(β,Aβ,A^2β)

=(α1+α2+α3,λ1α1+λ2α2+λ3α3,λ1^2α1+λ2^2α2+λ3^2α3)

=(α1,α2,α3)K

广义特征值

如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν,其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。

arongustc
科技发烧友

2023-01-01 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:2.3万
采纳率:66%
帮助的人:5999万
展开全部
不对,他可以有相同的特征值,也可能只有一个特征值
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式