求解非齐次线性方程组x1+2x2+3x3+4x4=5,x1-x2+x3+x4=1
解答过程如下:
增广矩阵 (2113A,b)=
[1 2 3 4 5]
[1 1 1 1 1]
行初等变换为
[1 1 1 1 1]
[0 1 2 3 4]
方程组同解变形为
x1+x2=1-x3-x4
x2=4-2x3-3x4
取 x3=x4=0, 得特解 (-3, 4, 0, 0)^T,导出组即对应4102的齐次方程是
x1+x2=-x3-x4
x2=-2x3-3x4
取 x3=1,x4=0, 得基础解系1653专 (1, -2, 1, 0)^T;
取 x3=0,x4=1, 得基础解系 (2, -3, 0, 1)^T;
原方程组的通解是
x=(-3, 4, 0, 0)^T+k(1, -2, 1, 0)^T+c(2, -3, 0, 1)^T。
其中 k,c 为任意属常数。
扩展资料
齐次线性方程组求解步骤
1、对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵;
1、若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束;
若r(A)=r<n(未知量的个数),则原方程组有非零解,进行以下步骤:
3、继续将系数矩阵A化为行最简形矩阵,并写出同解方程组;
4、选取合适的自由未知量,并取相应的基本向量组,代入同解方程版组,得到原方程组的基础解系,进而写出通解。
齐次线性方程组性质
1、齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。
2、齐次线性方程组的解的k倍仍然是齐次线性方程组的解。
3、齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解。
4、齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解。