已知实数a,b满足:a^2+b^2=ab+a+b-1,求a+b之值?
1个回答
展开全部
1.
a²+b²=ab+a+b-1
2(a²+b²)=2(ab+a+b-1)
2(a²+b²)-2(ab+a+b-1)=0
2a²+2b²-2ab-2a-2a+2=0
(a²+b²-2ab) + (a²-2a+1) + (b²-2b+1)=0
(a-b)²+(a-1)²+(b-1)²=0
∵(a-b)²≥0,(a-1)²≥0,(b-1)²≥0
∴(a-b)²=0,(a-1)²=0,(b-1)²=0
∴a=b=1
∴a+b=2
2.
a²+b²≥2ab
b²+c²≥2bc
a²+c²≥2ac
全加,得
2(a²+b²+c²)≥2(ab+bc+ac)
即a²+b²+c²≥ab+bc+ac,1,(1)a²+b²=ab+a+b-1
即 a²+b²+1²-ab-a*1-b*1=0
即 1/2[(a²-2ab+b²)+(a²-2*a*1+1)+(b²-2*b*1+1) ]=0
即有 (a-b)²+(a-1)²...,0,已知实数a,b满足:a^2+b^2=ab+a+b-1,求a+b之值
2.设a,b,c为实数,求证a^2+b+c^2>等于ab+bc+ca
a²+b²=ab+a+b-1
2(a²+b²)=2(ab+a+b-1)
2(a²+b²)-2(ab+a+b-1)=0
2a²+2b²-2ab-2a-2a+2=0
(a²+b²-2ab) + (a²-2a+1) + (b²-2b+1)=0
(a-b)²+(a-1)²+(b-1)²=0
∵(a-b)²≥0,(a-1)²≥0,(b-1)²≥0
∴(a-b)²=0,(a-1)²=0,(b-1)²=0
∴a=b=1
∴a+b=2
2.
a²+b²≥2ab
b²+c²≥2bc
a²+c²≥2ac
全加,得
2(a²+b²+c²)≥2(ab+bc+ac)
即a²+b²+c²≥ab+bc+ac,1,(1)a²+b²=ab+a+b-1
即 a²+b²+1²-ab-a*1-b*1=0
即 1/2[(a²-2ab+b²)+(a²-2*a*1+1)+(b²-2*b*1+1) ]=0
即有 (a-b)²+(a-1)²...,0,已知实数a,b满足:a^2+b^2=ab+a+b-1,求a+b之值
2.设a,b,c为实数,求证a^2+b+c^2>等于ab+bc+ca
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询