求不定积分∫ xdx/√(2X^2-4x)
2个回答
展开全部
∫ xdx/√(2X^2-4x)
=√2/2∫ xdx/√(X^2-2x)
=√2/2∫ (x-2+2)dx/√(X^2-2x)
=√2/2∫ [(x-1)/√(X^2-2x)+1/√(X^2-2x)]dx
=√2/4∫ [1/√(X^2-2x)d(x^2-2x)+√2/2∫ 1/√(X^2-2x)]dx
=√2/2*√(X^2-2x)++√2/2∫ 1/√(X^2-2x)]dx
剩下的一项套公式吧
∫1/√(x^2-a^2)dx
=√2/2∫ xdx/√(X^2-2x)
=√2/2∫ (x-2+2)dx/√(X^2-2x)
=√2/2∫ [(x-1)/√(X^2-2x)+1/√(X^2-2x)]dx
=√2/4∫ [1/√(X^2-2x)d(x^2-2x)+√2/2∫ 1/√(X^2-2x)]dx
=√2/2*√(X^2-2x)++√2/2∫ 1/√(X^2-2x)]dx
剩下的一项套公式吧
∫1/√(x^2-a^2)dx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
I = ∫xdx/√(2x^2-4x) = (1/√2)∫xdx/√(x^2-2x) = (1/√2)∫xdx/√[(x-1)^2-1]
令 x-1 = sect, 则
I = (1/√2)∫(1+sect) sect dt = (1/√2)∫sect dt + (1/√2)∫(sect)^2 dt
= (1/√2) tant + (1/√2)ln|sect+tant| + C
= √(2x^2-4x) + (1/√2)ln|x-1+√(x^2-2x)| + C
令 x-1 = sect, 则
I = (1/√2)∫(1+sect) sect dt = (1/√2)∫sect dt + (1/√2)∫(sect)^2 dt
= (1/√2) tant + (1/√2)ln|sect+tant| + C
= √(2x^2-4x) + (1/√2)ln|x-1+√(x^2-2x)| + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |